

Investing in the Circular Bioeconomy Transition: Sustainable Food, Fibre and Energy¹

Introduction

Humanity stands at a pivotal crossroads. As the world's population approaches 10 billion later this century, the challenge of sustaining economic growth while preserving planetary health has never been more urgent.

The 21st century is defined by a convergence of crises—climate change, biodiversity loss, resource depletion, and mounting waste—that threaten the foundations of our societies and economies. Traditional models of production and consumption, built on linear “take-make-dispose” systems and fossil resource dependence, underly these pressures and are proving unsustainable in the face of them.

In response, a new vision for economic development is emerging: one that seeks to harmonise human prosperity with ecological integrity. The circular bioeconomy offers a pathway to this future, reimagining how we produce, use, and reuse the energy and materials that underpin modern life. By leveraging renewable biological resources and closing waste, materials, and energy loops, the circular bioeconomy decouples growth from environmental harm, fostering systems that are sustainable by design. Oversimplified, circularity comprises the efficient use and reuse of resources, and bioeconomy includes the production of renewable biological resources and their conversion into value added products.^{2,3}

Governments have increasingly recognised the circular bioeconomy as a pathway to sustainable growth. More than 60 countries have adopted national bioeconomy strategies or roadmaps, often aiming to boost food and energy security, foster innovation, and meet climate targets. Alongside bioeconomy plans, more than 70 countries have official circular economy roadmaps.

Land, forests, and agriculture are key enablers of the circular bioeconomy. The agriculture and forestry sectors will together need to support transitions in land management, renewable energy, materials, and the built environment.

Recent outlooks suggest that total consumption of agricultural and fisheries commodities will increase 13% by 2034,⁴ and that agriculture, wood fibre, and bioenergy demand will rise 35–56% by 2050.^{5,6} From now to 2050, consumption will increase in food and animal feed production from approximately 20 billion tonnes per annum (tpa) to 27–31 billion tpa, and demand for forestry wood supply will rise from 2 billion to 3–3.4 billion tpa, and wood-based energy – including subsistence energy – from 1.9 billion to potentially 2.3 billion tpa.⁶ The investment needed to increase supply to meet anticipated demand in 2050 is expected to be approximately \$70 billion per annum in the forestry sector and likely \$300–\$400 billion per annum in the agriculture sector.⁶ These projections may increase further if there is systematic growth in substituting biobased products for fossil fuels and high embodied energy materials.

This article reflects on the challenges and opportunities for investors in meeting this growing demand for sustainable food, fibre, and energy. It explores how production can be increased; how improved investment allocation can increase efficiency, allowing conservation and production to co-exist; and how public policies are being designed to accelerate the transition.

Continued economic growth in a world with
10 billion people later this century will require investment in a series of sustainability driven transitions

Recent outlooks suggest:

Total consumption of agricultural and fisheries commodities will increase

13% by 2034 and that agriculture, wood fibre, and bioenergy demand will rise 35–56% by 2050

From now to 2050 up to:

55%

increase in **food and animal feed** production

70%

increase in demand for **forestry wood supply**

21%

increase in demand for **wood-based energy**

Investment needed to increase supply to meet anticipated demand in 2050 is expected to be

approximately
\$70 billion
per annum in the forestry sector

likely
\$300–\$400 billion
per annum in the agriculture sector

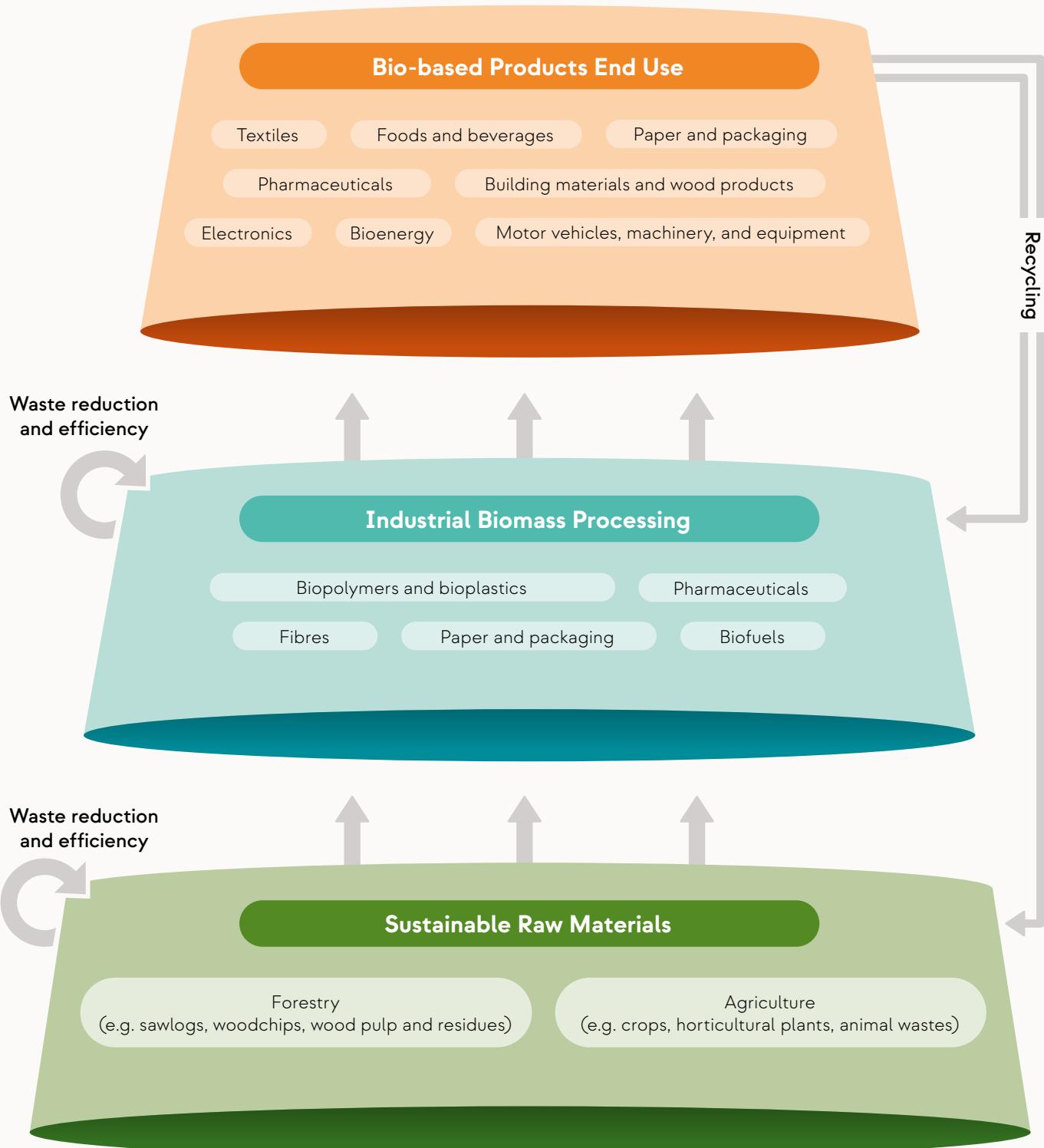
These projections may increase further if there is systematic growth in substituting biobased products for fossil fuels and high embodied energy materials.

* Projections are in USD

How important is the bioeconomy today and how important could it become in the next 25 years?

The bioeconomy encompasses both conventional agriculture and forestry production, as well as a spectrum of biobased materials like cellulosic fabrics, new food production technologies like precision fermentation, pharmaceuticals, engineered wood products, new energy technologies such as syngas and jet fuel, bioplastics, across a broad range of materials, processes, and production flows (Figure 1).

McKinsey Global Institute suggests that 60% of all materials used in human society could be biobased in future decades.⁷ This bioeconomy transition is analogous to the energy transition in that it includes both a demand pull from the need to decarbonise the economy and a technology push as new biobased innovations become competitive with less sustainable alternatives. The European Environment Agency estimates that substituting all fossil-based plastics in the European Union with bio-based alternatives would result in annual greenhouse gas emissions reductions of 30%, in addition to many other health and environmental benefits.⁸


Given the uncertainties inherent in projecting how quickly bioeconomy drivers and technologies will evolve, current outlooks are relatively conservative. In the forestry sector, for example, the United Nations Food and Agriculture Organization (FAO) suggests that mass timber construction and cellulosic fibres will be the two major drivers of additional wood demand over the next 25 years but will still only increase demand by 5-10% versus a business as usual growth scenario (e.g. increasing industrial roundwood demand from 2 billion cubic metres today, to 3.3 billion in 2050 with the additional substitution demand, versus 3.1 billion in 2050 in the base case).⁶ This is unlikely to substantially impact the demand for existing non-renewable and high embodied energy materials like concrete, steel, plastics, and polyester fabrics. Bioenergy, both subsistence and industrial, and biofuel demand growth is also uncertain, with the FAO reviewing multiple studies that suggest limited growth in biomass-based energy demand.⁶ Studies by the Intergovernmental Panel on Climate Change and International Energy Agency, however, suggest the potential for much higher bioenergy demand associated with Bioenergy with Carbon Capture and Storage (BECCS) technologies in any scenario that realistically has the global economy achieving net zero emissions by 2050.^{10, 11}

As noted, demand for agricultural products is likely to expand by 35-56% over the next 25 years, but with higher demand growth in middle- and lower-income countries.⁵ Per capita caloric intake of animal protein is expected⁴ to increase with rising incomes in high- and middle-income economies. This increase in food demand is expected to be met by increases in agriculture production driven, in part, by biotechnology, greater global trade in food, and better supply chains reducing waste.^{12, 13} Agriculture may be disrupted through the bioeconomy transition as technologies like precision fermentation reduce demand for naturally produced food ingredients such as proteins, oils, dairy, and egg products.^{14, 15}

The bioeconomy transition will also be a function of geopolitical influences and public policy choices. The war in Ukraine has accelerated European efforts to produce syngas from agricultural and household waste streams. Denmark's Biomethane decree, for example, will replace 100% of natural gas imports with biomethane by 2035.¹⁶ In 2023, many countries joined in an effort to expand the use of wood in the built environment and reduce the growth in demand for concrete and steel at the United Nations Framework Convention on Climate Change COP28 in Dubai.¹⁷ Any systemic carbon price signal would also shift competitive dynamics between petroleum-based and high embodied energy materials on the one hand and biobased materials and energy systems on the other. While the bioeconomy transition is seen as a key element in addressing climate change, it has also drawn concern about impacts on nature if production systems continue to expand by replacing natural ecosystems like rainforests or savannahs.¹⁸

How important is the bioeconomy today and how important could it become in the next 25 years?

Figure 1: Variety of biomass materials and production flows⁹

Investing in sustainable production systems for agriculture and forestry

Improved and more efficient production systems for agriculture and forestry will be central to a circular bioeconomy transition.

Not only will these production systems need to be more efficient, but they will also need to be more resilient to climate change and alterations to natural ecosystem services like water regulation or pollination. Land management systems will also need to substantially reduce greenhouse gas emissions and shift from negatively impacting to positively contributing to nature conservation and restoration. Biotechnologies, and other crop improvement technologies are steadily enhancing efficiency and productivity as well as resistance to pests and diseases of agriculture and forestry crops.¹⁹ However, this has also led to a narrowing of agriculture and forestry diversity. FAO estimates, for example, that 75% of agriculture is based on 12 crop species and five animal species.²⁰ Forestry is increasingly reliant on intensive tree plantations for incremental production, and this is becoming more concentrated on species like Eucalyptus, pine, and spruce. It may be a continuous race between genetic manipulation and the need for adaption or resilience to a changing global environment. As discussed below, how production systems evolve to meet rising demand while also meeting key sustainability objectives is a central question in a bioeconomy transition.

Other developments will also improve productivity and efficiency. Enhanced monitoring systems and increasingly sophisticated geospatial and temporal analytics will improve land use allocation and land management decisions at a much more granular level. Expanding interest from investors in forestry and agriculture is allowing for asset recapitalisation, driving more innovation and faster adoption of new technologies.²¹ Improved infrastructure, refrigeration, supply chain effectiveness, and technologies in crop protection – including wildfire resilience and response capabilities in forestry – can increase the quantity of

food and fibre reaching the end consumer without requiring more land.

This relentless progress of efficiency can lead to lower commodity prices in agriculture, and potentially further rationalisation of the producer base.⁴ The long history of farming, and to a lesser degree forestry, as being based on small-scale enterprises, often family enterprises, is under pressure from highly efficient and well capitalised corporate farming operations. The trend, at least in many developed countries, seems to be that the most successful farmers buy out less successful farmers and slowly evolve to agribusiness scale and then these agribusinesses are sold to larger agribusiness consolidations and institutional investors.

Forestry and agriculture must also move to rapidly reduce net greenhouse gas emissions, move away from conversion of natural systems to production systems, and ultimately become both climate and nature positive by embedding conservation and restoration at a landscape scale. This is driving the new concept of a natural capital asset class which can integrate forestry and agriculture production, climate solutions, and nature conservation and restoration. Driven by emerging sources of option value – carbon, water and biodiversity markets and payment schemes, land leasing for renewable energy, and more dynamic allocation of land use at a landscape scale – this new asset class could potentially both increase resilience and improve risk adjusted returns. It is interesting to note that the International Sustainable Forestry Coalition, an international organisation representing the world's major forestry sector firms launched in 2023, was formed with the mission to accelerate the transition to a climate and nature positive circular bioeconomy.

Biotechnologies, and other crop improvement technologies are steadily enhancing efficiency and productivity as well as resistance to pests and diseases of agriculture and forestry crops.

This has also led to a narrowing of agriculture and forestry diversity. FAO estimates:

75% of agriculture is based on **12 crop species** and **five animal species**.

Forestry is **increasingly reliant on intensive tree plantations** for incremental production, and this is becoming more concentrated on species like **Eucalyptus, pine, and spruce**.

Innovation in the production and distribution of agricultural and forestry materials

A key component to accelerating the bioeconomy transition is that supply chain systems and processing infrastructure make full use of harvested materials and add value to the timber and agricultural produce.

In the case of forestry, FAO estimates that about 50% of a tree is normally utilised for the primary product like lumber, but only 30% of the remaining residual material ends up in secondary products like wood fibre, particleboard, or wood pellets.⁶ If 70% of the residual material was utilised, it would be like adding 500 million cubic metres of new supply to the forestry sector. Agriculture is similar, in that an estimated 40% of food produced is spoiled or wasted through inefficient harvesting, storage, and distribution.²²

Resource utilisation can be transformed by investment. Putting in place the infrastructure like ports, refrigeration, processing precincts, and processing ecosystems can move towards 100% utilisation and the ability to link primary and secondary processing together and get products successfully to market.

In forestry, for example, there is increasingly an emphasis on co-locating or linking primary breakdown, which might be a sawmill, with a value-added facility like a cross laminated and glue laminated timber plant as well as a waste stream processing like biochar, wood plastic composite materials, or bioenergy. Developments are also occurring in crop monitoring to optimise harvest timing, using robotics in harvesting and processing, and electrifying transport and processing so the industry can be largely powered by renewable energy.

Recycling and re-use expands the supply of materials further, especially in the forestry sector. If we took the earlier example of increasing waste utilisation, alongside increasing recycling rates and re-use, and expanding highly productive plantations in areas of marginal agriculture, there could be substantial

Supply chain systems and processing infrastructure make full use of harvested materials, adding value to timber and agricultural produce – making it a key component to accelerating the bioeconomy transition.

Forestry:

FAO estimates that about

50% of a tree is normally utilised for the primary product like lumber

30% of the remaining residual material ends up in secondary products like wood fibre, particleboard, or wood pellets.

Agriculture:

An estimated

40% of food produced is spoiled or wasted through inefficient harvesting, storage, and distribution.

increases in bioeconomy feedstock. For example, increasing utilisation of the 2 billion cubic metres of industrial roundwood stock adds 500 million cubic metres of additional products. Recycling 50% of that total will create a further 1 billion cubic metres of feedstock. Adding another 30 million hectares of plantations on degraded land largely in the global south, as suggested by the FAO, would also add another 500 million cubic metres of feedstock. Collectively this would double the forestry feedstock.

Agriculture could similarly increase the product delivered to the consumer by optimising harvest, creating processing ecosystems across direct consumer goods like apples and secondary products like apple juice and apple sauce, and utilisation of any waste into biogas. Supply chains can also be significantly improved. Meat can be sold and transported as boxed, chilled beef if renewable energy-based refrigeration infrastructure was available in the markets where the meat is sold. Curing, drying, and packaging systems can extend shelf life and further reduce wastage. The earlier example of technology-driven innovations in food ingredients, for example, also increases capacity and streamlines the production of processed foods like ice cream, industrial cheeses, infant formula, and protein bars.¹⁴ Much like in forestry, reducing wastage and spoilage effectively, and adding new industrial processes, increases the net production from the existing farmed or ranched land base.

Example

2 billion m³

[Existing industrial feedstock]

+ 500 million m³

[Increasing utilisation of existing feedstock]

+ 1 billion m³

[Recycling 50% of existing feedstock]

+ 500 million m³

[From newly planted forested land]

4 billion m³

[Doubling the existing feedstock]

Public policy frameworks to accelerate investment in a climate and nature positive circular bioeconomy transition

Governments are recognising the importance of the circular bioeconomy transition.^{13,23}

Bioeconomy strategies are being promulgated around the world in Europe, India, China, Brazil, Japan, and beyond.²⁴ The G20, hosted by Brazil in 2024, had the bioeconomy transition as a key theme, which has been continued by the South African presidency in 2025.²⁵ Governments can intervene to accelerate the adoption of bioeconomy systems in multiple ways, from supporting basic and applied research to subsidising or removing regulatory barriers to transitions like mass timber construction, adoption of cellulosic fabrics, utilisation of synthetic food ingredients, and biobased energy systems and fuels.¹³ Governments can also drive change through price signals like carbon markets or nature conservation markets, repricing waste to encourage recycling and reuse, and giving tax breaks for investments that increase efficiency and extend resource utilisation.²³ Governments can also reconsider policy questions like controls on genetic engineering to increase productivity and reduce pesticide use.

Often, the barriers to bioeconomy transitions are more than just economic. In many countries, the expansion of mass timber construction has been hampered by slow modernisation of building codes, fire codes, architectural codes, and contractor education. Existing industries may lobby against changes. For example, there is likely to be competition between mass timber and steel construction, bioplastics and petrochemical plastics, synthetic dairy proteins and milk, cellulosic fabrics and polyester, and so on. The government of Florida in the United States, for example, is seeking to make cultivated meats illegal.²⁶ The oil and gas industry, seeing peak oil consumption on the horizon owing to electric vehicle penetration, has resisted a global plastics treaty to protect the petrochemical industry.²⁷ This resistance to change, however, generally breaks down when consumers begin to prefer new products and cost competitiveness undercuts the price advantage of existing industry.¹⁵

Investment opportunities by geographic region and segment

The circular bioeconomy transition theme is accessible to investors across a range of asset classes, risk profiles, and liquidity profiles.²⁵

Ownership of rural land, with leasing of agricultural and forestry production, is a relatively low risk entry point. Alternatively, investing in forestry and agricultural production, which may or may not include owning or leasing land, is a conventional real asset class. Investments in processing activities or firms can be integrated with the real assets as private equity, or as a thematic in listed equity selection. There are also specialised venture capital funds that provide access to private firms in the start-up or growth phase, driving the technologies and enabling services that support the circular bioeconomy transition.

There are geographic and currency considerations. Many investors may prefer investments in their own currency or in developed countries, and the circular bioeconomy theme is available across multiple regions. For example, the U.S. has hundreds of billions of dollars of value in forestry and agriculture assets. Australia and New Zealand are also seen as low-risk jurisdictions with substantial investible assets. Europe tends to be more tightly held but is also one of the major regions for agricultural and forestry production. In Latin America, Brazil, Uruguay, and Chile have large pools of assets, although in the case of Brazil²⁸ there are some restrictions on foreign investment in land ownership. Emerging markets like Southeast Asia and Africa have substantial market demand but a higher risk profile and more transaction costs for investors. China and East Asia have substantial industries across both forestry and agriculture but have attracted limited foreign investment to date.

Investors can select traditional assets like forestry and agriculture land, or they can invest across the landscape in natural capital or landscape funds that integrate forestry, agriculture, climate solutions, and nature conservation and restoration. Likewise, there is a range of risk return profiles across production – from very low risk timber plantations or cropping and grazing assets to higher risk horticulture, greenhouse production systems and processing – and from conventional processing like sawmills and abattoirs to high-tech or emerging industries like engineered wood products, precision fermentation, or dissolving pulp mills for cellulosic fabrics.

Increasingly, investors are setting systemic objectives for portfolio decarbonisation or in supporting a natural positive outcome. These investors may select within asset classes for activities like regenerative or organic agriculture, forests with high carbon removal capacity, areas with degraded land that might be used for carbon removals or nature restoration, or new industries that substitute for fossil fuels or reduce impacts on nature. Investors and investment managers are also increasingly seeking standardised metrics that can allow portfolio allocations to be simulated and monitored for climate and biodiversity outcomes as well as risk and return characteristics.^{1, 9, 29}

Investor examples

The U.S

has hundreds of billions of dollars of value in forestry and agriculture assets.

Australia and New Zealand

are seen as low-risk jurisdictions with substantial investible assets.

Europe

tends to be more tightly held but is also one of the major regions for agricultural and forestry production.

Latin America

Brazil, Uruguay, and Chile have large pools of assets, although in Brazil, there are some restrictions on foreign investment in land ownership.

Emerging markets

Southeast Asia and Africa

have substantial market demand but a higher risk profile and more transaction costs for investors.

China and East Asia

have substantial industries across both forestry and agriculture but have attracted limited foreign investment to date.

Conclusion

The bioeconomy transition theme incorporates an expansive set of investment opportunities that cut across large swathes of the global economy from food to fibre to energy to materials.

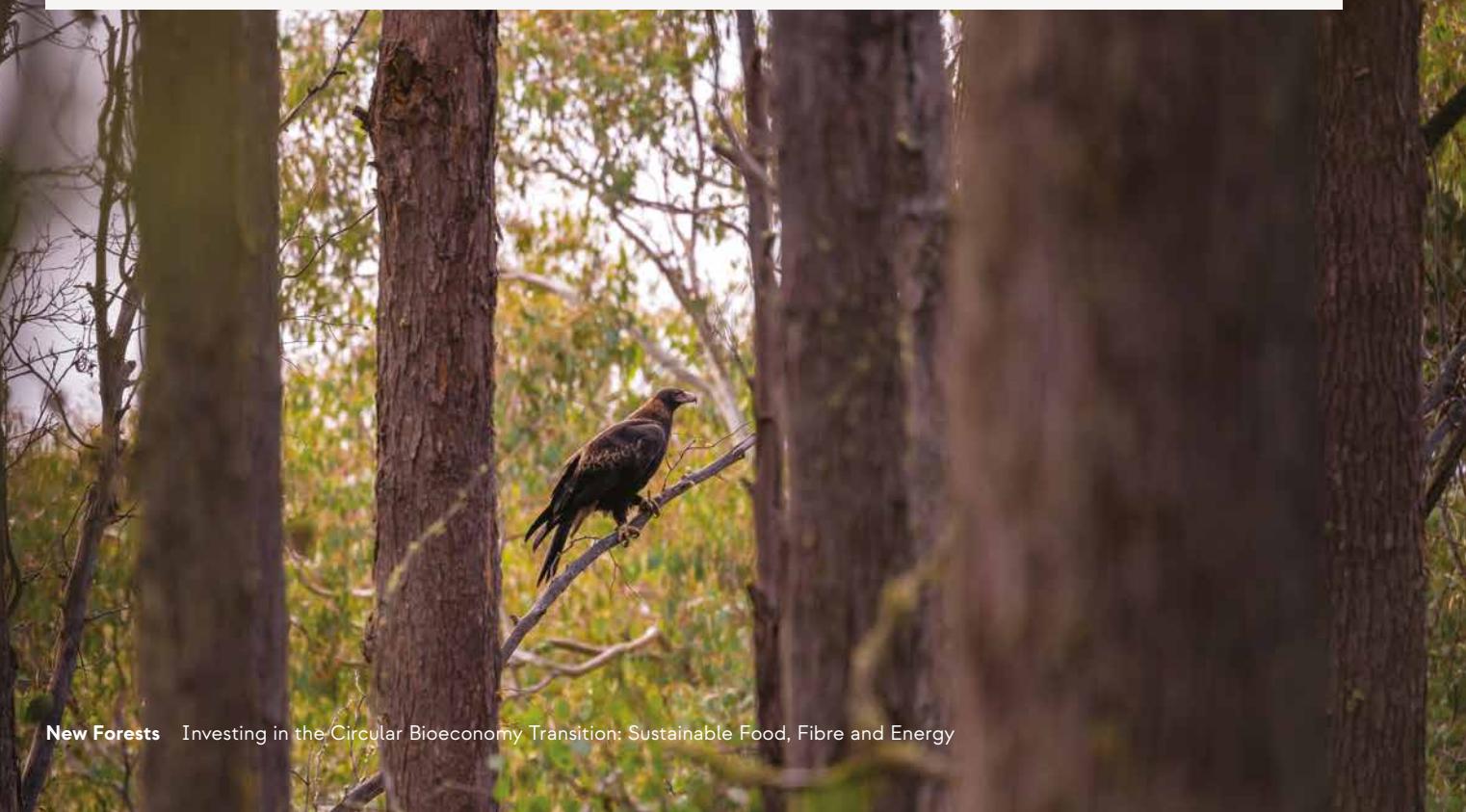
The slowing but still expanding growth of global population at least until late this century, combined with the continuous growth of the global economy, will force systemic changes to address sustainability challenges. The circular bioeconomy provides new opportunities and pathways for sustainable continuous economic growth. Sustainable food and materials investments appear to be an area where increased allocations will deliver exposure to high growth and increased valuations. In New Forests' experience, there are already areas, like forestry assets in Australia and New Zealand, where asset prices have increased four to fivefold over the past decade because of emerging option values associated with these assets.³⁰

In any transition, there are winners and losers. Some agriculture segments may be disrupted by technology, and some regions may have productivity curtailed by

climate change, water shortages, or land degradation. Systems that impact nature through dependencies on deforestation or excessive synthetic chemical use may also be under public policy pressure to reduce impacts, affecting profitability. Investing in transitions can be uncertain because there is no track record to judge expected performance. There are equal risks, however, in investing in traditional asset management strategies and industries that are increasingly exposed to disruption.

Society sits at a crossroads, requiring us to embrace a new vision for economic development: one that seeks to harmonise human prosperity with ecological integrity. The circular bioeconomy offers a pathway to this future and an opportunity for investors.

The circular bioeconomy provides:


New opportunities and pathways for sustainable continuous economic growth.

Sustainable food and materials investments appear to be an area where increased allocations will deliver exposure to high growth and increased valuations.

Areas such as forestry asset prices in Australia and New Zealand, have **increased four to fivefold over the past decade**

because of emerging option values associated with these assets.

References

- 1 This article is for informational purposes only and does not constitute legal, financial, or investment advice. Readers should seek independent professional advice before making any investment or financial decisions. Neither New Forests nor the author accepts any liability for actions taken based on the content of this article.
- 2 M. Carus, L. Dammer, "The Circular Bioeconomy - Concepts, Opportunities, and Limitations" (nova Institute, 2018).
- 3 E. C. D. Tan, P. Lamers, Circular Bioeconomy Concepts - A Perspective. *Front. Sustain.* 2 (2021).
- 4 OECD/FAO, *OECD-FAO Agricultural Outlook 2025-2034* (OECD/FAO, 2025).
- 5 M. Van Dijk, T. Morley, M. L. Rau, Y. Saghai, A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. *Nat Food* 2, 494–501 (2021).
- 6 FAO, "Global forest sector outlook 2050: Assessing future demand and sources of timber for a sustainable economy – Background paper for The State of the World's Forests 2022" (FAO, 2022).
- 7 M. Chui, M. Evers, J. Manyika, A. Cheng, T. Nisbet, "The Bio Revolution Report: Innovations transforming economies, societies, and our lives" (McKinsey Global Institute, 2020).
- 8 EEA, "Plastics, the circular economy and Europe's environment - A priority for action" (European Environment Agency, 2020).
- 9 WBCSD, "Circular bioeconomy: The business opportunity contributing to a sustainable world" (World Business Council for Sustainable Development, 2020).
- 10 H. de Coninck, et al., "Strengthening and Implementing the Global Response" in *Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty*, 1st Ed., (Cambridge University Press, 2018), pp. 313–444.
- 11 IEA Bioenergy, "IEA Bioenergy Annual Report 2021" (International Energy Agency, 2021).
- 12 F. Khan, M. Palmer, M. Chang, How countries are redefining their bioeconomy for the future. *World Economic Forum* (2024). Available at: <https://www.weforum.org/stories/2024/05/countries-redefining-bioeconomy-for-the-future/> [Accessed 7 October 2025].
- 13 J. Bojović, et al., "Accelerating the Global Transition to a Bio-based Economy: The Strategic Role of Policy" (World Economic Forum, 2024).
- 14 K. Verma, P. Duhan, D. Pal, P. Verma, P. Bansal, Precision fermentation for the next generation of food ingredients: Opportunities and challenges. *Future Foods* 12, 100750 (2025).
- 15 P. Gilding, "Renewable Food: A Transformed and Renewable Food System is Now Possible" (University of Cambridge Institute for Sustainability Leadership, 2025).
- 16 Denmark showcases its strategy to replace 100% of natural gas with biomethane by 2035 at the Renewable Gas Show. *Salón del Gas Renovable* (2025). Available at: <https://www.salondelgasrenovable.com/en/noticias/dinamarca-muestra-en-el-salon-del-gas-renovable-su-estrategia-para-sustituir-el-100-del-gas-natural-por-biometano-en-2035/> [Accessed 8 October 2025].
- 17 S. Henderson, et al., "FCLP Annual Report 2024" (Forest and Climate Leaders' Partnership, 2025).
- 18 M. Khanna, D. Zilberman, G. Hochman, B. Basso, An economic perspective of the circular bioeconomy in the food and agricultural sector. *Commun Earth Environ* 5, 507 (2024).
- 19 C. D. Messina, et al., Crop Improvement for Circular Bioeconomy Systems. *Journal of the ASABE* 65, 491–504 (2022).
- 20 FAO, "What is Agrobiodiversity?" (FAO, 2004).
- 21 G. Schuck, From niche to norm: Impact investing in agriculture continues to rise as investors recognise the opportunities associated with funding the future of food. *AIMA* (2023). Available at: <https://www.aima.org/article/from-niche-to-norm-impact-investing-in-agriculture-continues-to-rise-as-investors-recognise-the-opportunities-associated-with-funding-the-future-of-food.html> [Accessed 15 October 2025].
- 22 L. Goodwin, B. Lipinski, How Much Food Does the World Really Waste? What We Know - and What We Don't. *World Resources Institute* (2024). Available at: <https://www.wri.org/insights/how-much-food-does-the-world-waste> [Accessed 15 October 2025].
- 23 T. Dietz, et al., "Bioeconomy globalization: Recent trends and drivers of national programs and policies" (International Advisory Council on Global Bioeconomy, 2024).
- 24 M. Gomez San Juan, S. Harnett, I. Albinelli, "Sustainable and circular bioeconomy in the climate agenda: Opportunities to transform agrifood systems" (FAO, 2022).
- 25 World Bioeconomy Forum, Nature Finance, "Financing A Sustainable Global Bioeconomy" (World Bioeconomy Forum and Nature Finance, 2024).
- 26 G. Garwood, Why is Florida Trying to Ban Cultivated Meat? *The Food Institute* (2024). Available at: <https://foodinstitute.com/test-site/focus/why-is-florida-trying-to-ban-cultivated-meat/> [Accessed 15 October 2025].
- 27 J. Winters, Once Again, Oil States Thwart Agreement on Plastics. *Yale Environment 360* (2025). Available at: <https://e360.yale.edu/digest/global-plastics-treaty> [Accessed 15 October 2025].
- 28 See for example: Federal Law 5.709/1971, Decree 74.965/1974 and the Brazilian Constitution.
- 29 K. A. Morriesen, "Impact Investing Market Map" (Principles for Responsible Investment, 2018).
- 30 New Forests' Australia and New Zealand track record as at 30 June 2025.

© New Forests 2025. This paper is issued by and is the property of New Forests Pty Ltd and is intended for the sole use of its clients, consultants, and other intended recipients. The contents of this article and proprietary information may not be reproduced or used in any form or medium without New Forests' express written permission.

This paper is dated March 2024. Statements in this paper are made only as of the date of this paper unless otherwise stated. New Forests is not responsible for providing updated information to any person.

This paper should be viewed in conjunction with all other applicable information and updates issued by New Forests in relation to any investment. This paper is intended for discussion and illustrative purposes only and does not represent advice or a recommendation to enter into any investment. This paper is not an offer to buy or sell, nor a solicitation of an offer to buy or sell, any security or other financial product. This paper does not purport to contain all the information a person may require in relation to its content matter. Prospective investors are not to construe the contents of this paper as legal, tax, investment, financial or other advice. Each prospective investor should consult its own advisers as to the legal, business, tax and other related matters concerning an investment in the fund.

The information contained in this paper has not been independently verified. Certain economic and market information has been obtained from published sources and/or prepared by third parties. While New Forests believes such sources to be reliable, none of New Forests, its affiliates nor any of their respective directors, officers and employees assumes any responsibility for the accuracy or completeness of such information. This article represents certain possible scenarios and is dependent on a range of assumptions. This paper should not be relied upon as a definitive description of the capability of a fund. If applicable, credit and/or carbon sales are for illustrative purposes only and are based on a specific set of assumptions as to possible future legislative and regulatory frameworks.

All assumptions contained in this paper that are not of historical fact constitute "forward-looking projections." All projections regarding the fund's expected financial condition and results of operations, business, plans and prospects are forward-looking projections. These forward-looking projections may include projections as to the fund's business strategy, planned projects and other matters discussed in the disclosure paper regarding matters that are not historical fact. These forward-looking projections and any other statements involve known and unknown risks, uncertainties and other factors that may cause the fund's actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements or other projections. New Forests believes that the assumptions underlying the attached projections are reasonable, based on the information available to New Forests at the date of preparation. No assurance can be given that the assumptions will not change or that the projections will reflect the actual financial results that will be achieved if a purchaser acquires the assets subject to these projections or over what period these results, if achieved, will be achieved. The projections are not necessarily indicative of actual results of operations and differences may result, where applicable, from changes in operations, changes in credit prices, changes in carbon prices, changes in operating expenses, changes in law or governmental policies, and other relevant considerations. Past performance is not an indicator of future performance. Past performance is not an indicator of future performance. Except insofar as liability under any statute cannot be excluded, none of New Forests, its affiliates nor any of their respective directors, officers and employees accepts any liability for any loss or damage (whether direct, indirect, consequential or otherwise) arising from the use of the information contained in this paper.

New Forests Advisory Pty Limited (ACN 114 545 274) is registered with the Australian Securities and Investments Commission and is the holder of AFSL No 301556. New Forests Asset Management Pty Limited (ACN 114 545 283) is registered with the Australian Securities and Investments Commission and is an Authorised Representative of New Forests Advisory Pty Limited (AFS Representative Number 376306). New Agriculture Pty Limited (ACN 658 097 020) is registered with the Australian Securities and Investments Commission and is an Authorised Representative of New Forests Advisory Pty Limited (AFS Representative Number 1298119). New Forests Africa Investments VCC (the VCC) is a variable capital company incorporated in the Republic of Singapore under the Variable Capital Companies Act 2018 of Singapore. The manager of the VCC is New Forests Asia (Singapore) Pte. Ltd. (UEN ID: 201115321G). New Forests Asia (Singapore) Pte Ltd holds a Capital Markets Services License as an Accredited/Institutional Licensed Fund Management Company (A/I LFMC), issued by the Monetary Authority of Singapore.

New Forests is a proud and active member of industry and investment groups seeking to address global environmental, social, and financial risks facing our world and society through sustainable and responsible investments.

For more information, visit us online at
www.newforests.com

Australia
France
Kenya
New Zealand
Singapore
United States

www.newforests.com

New Forests is part of the Certified B Corp community, a global movement of people using business as a force for good